ELISA kits available from ADI (see details at the web site)

#0010 Human Leptin #200-120-AGH Human globular Adiponectin (gAcrp30) Human Sex Hormone Binding Glob (SHBG) #0700 Human IGF-Binding Protein 1 (IGFBP1) #0900 Human C-Reactive Protein (CRP) #1000 Human Resistin /FIZZ3 #100-110-RSH #100-140-ADH Human Adiponectin (Acrp30) #100-160-ANH Human Angiogenin Human Angiopoietin-2 (Ang-2) #100-180-APH Human Bone Morphogenic Protein 7 (BMP-7) #100-190-B7H #1190 Human Serum Albumin #1200 Human Albumin (Urinary) #1750 Human IgG (total) Human IaM #1760 Human IgE Human Ferritin #1800 #1810 Beta-2 microglobulin #1210 Human Transferrin (Tf) #0020 #1600 Human Growth Hormone (GH) Human Pancreatic Colorectal cancer (CA-242) #0060 Human Ovarian Cancer (CA125) #1830 Human CA153 #1820 #1840 Human Pancreatic & GI Cancer (CA199) #1310 **Human Pancreatic Lipase** Human Prostatic Acid Phosphatase (PAP) #1400 Human Prostate Specific Antigen (PSA) #1510 free PSA (fPSA) #1500 #0500 Human Alpha Fetoprotein (AFP) Human Neuron Specific Enolase (NSE) #0050 #0030 Human Insulin #0040 Human C-peptide #0100 Human Luteinizing Hormone (LH) Human Follicle Stimulating Hormone (FSH) #0200 Human Prolactin (PRL) #0300 Human Chorionic Gonadotropin (HCG) #0400 #0410 HCG-free beta #0600 Human Thyroid Stimulating Hormone (TSH) #1100 Human Total Thyroxine (T4) #1110 Human Free T4 (fT4) Human free triiodothyronine (fT3) Human T3 (total) #1650 #1700 #1850 Human Cortisol #1860 Human Progesterone #1865 Human Pregnolone #1875 Human Aldosterone Human Testosterone Human free Testosterone #1880 #1885 #1910 Human Androstenedione #1920 **Human Estradiol** #1925 Human Estrone #1940 Dihydrotestosterone (DHT) Human DHEA-sulphate (DHEA-S) #1950 Human serum Neopterin #3400 #3000 Human Rheumatoid Factors IgM (RF) Human anti-dsDNA #3100 #3200 Anti-Nuclear Antibodies (ANA)

0200/240613A Page 7

Alpha Diagnostic Intl. (www.4adi.com)

Instruction Manual No. M-200

Follicle Stimulating Hormone (FSH)

ELISA KIT Cat. No. 0200, 96 Tests

For Quantitative Determination of FSH In Human Serum

For In Vitro Research Use Only

4638 N Loop 1604 West • San Antonio• Texas 78249 • USA.

Phone (210) 561-9515 • Fax (210) 561-9544

Toll Free (800) 786-5777

Email: service@4adi.com

Web Site: www.4adi.com

Follicle Stimulating Hormone (FSH) ELISA KIT Cat. No. 0200, 96 Tests

Kit Components	Cat #
Anti-FSH monoclonal antibody coated strips, 96	201
wells,	
FSH Std. A , (0 IU/L), 2 ml	202A
FSH Std. B , (5 IU/L), 0.50 ml	202B
FSH Std. C , (10 IU/L), 0.50 ml	202C
FSH Std. D , (25 IU/L), 0.50 ml	202D
FSH Std. E , (50 IU/L), 0.50 ml	202E
FSH Std. F ; (100 IU/L), 0.50 ml	202F
FSH Low & High controls, 0.5 ml/vial, exact values	printed on vial,
#LC-200, #HC-200	
Anti-hFSH- HRP conjugate (51X) , 300 μl	203
HRP substrate Solution (ready-to-use); 16 ml	TMB-200
Assay Buffer 25 ml	204
Wash buffer (10X), 50 ml (dilute 1:10 with	W B - 1 0
distilled water, 50 ml stock to 450 ml dH2O)	
Stop solution, 6 ml,	T-10
Complete Instruction Manual,	M-200

Intended Use:

ADI's Follicle Stimulating Hormone (FSH) for Quantitative Determination of FSH In Human Serum. For In Vitro Research Use Only (RUO).

Introduction

FSH and human luteinizing hormone (LH) are glycoprotein hormones with mol. wt. Of approx. 30 kDa. Each hormone is composed of 2 polypeptide chains, alpha and beta subunits. LH, FHS, TSH, and HCG share the same alpha subunits. The beta subunit structure differs among these hormones and determines specificity and biological action. FSH and LH are secreted by the basophilic cells of the anterior pituitary in response to the Gonadotropinreleasing hormone (GnRH) produced by the hypothalamus. In both males and females, FSH and LH control the development and maintenance of the gonadal tissue, which synthesize and secrete steroid hormones. In females, FSH controls the developing ovarian follicles and, in males, FSH maintaining spermatogenesis in the testes with the aid of LH and testosterone. LH promotes secretion of estrogen and progesterone by the ovary and of testosterone by the testes. LH also triggers ovulation. These steroid hormones control the circulating levels of LH and FSH by a negative feedback effects on the hypothalamus. The roles of FSH and LH are thus interrelated and mutually potentiating and for this reason are routinely performed concurrently in the differential diagnosis of hypothalamic, pituitary or gonadal dysfunction. Additionally, the hormone levels are used to assess the menstrual cycle for ovulation timing and monitoring of ovulation induction, determination of menopause and for monitoring endocrine therapy.

PERFORMANCE CHARACTERISTICS

1. DETECTION LIMIT

Based on sixteen replicates of the zero standard, the minimum FSH concentration detectable using this assay is 1 IU/L. The detection limit is defined as the value deviating by 2 SD from the zero standard.

2. PRECISION

Intra-assay precision:

Three serum samples (mean FSH concentrations: 7.41, 48.57, and 138.12 IU/L) were run in sixteen replicates in an assay. The samples showed good intra-assay precision with %CV of 5.8, 3.5, and .3.4 respectively.

Inter-assay precision: Three serum samples were run ten times over a period of 4 weeks.

Sample	Mean	SD	CV%
1	7.11	0.24	3.4
2	44.31	2.01	4.5
3	120.63	7.74	7.7

3. RECOVERY

A known amount of FSH (50 and 100 mIU/ml) was added to two patient sera (with original FSH concentrations of 14 and 32 mIU/ml) and final FSH concentrations measured. The assay showed excellent mean recoveries of about 92.5% (range 91-97%).

4. LINEARITY

Three different patient samples (with original FSH concentrations of 18, 34, and 129 mlU/ml) were diluted (1:2, 1:5, and 1:10) with the zero standard and their final FSH values determined. The samples showed excellent mean recoveries of about 104% (range 93-118%).

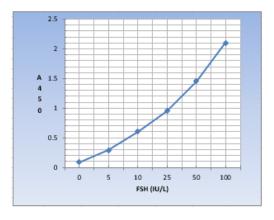
5. HIGH DOSE HOOK EFFECT

FSH concentrations of up to 50000 IU/L did not show any hook effect

6. SPECIFICITY

The specificity of FSH kit was determined by measuring interference from high concentrations of hLH (up to 200 IU/L), hTSH (up to 50 uIU/ml), and HCG (up to 10000 IU/L). These hormones had a minimal interference in the FSH assay (0.01% or less)

Alpha Diagnostic Intl. (www.4adi.com)


0200/240613A

Page 6

WORKSHEET OF TYPICAL ASSAY

Wells	Stds/samples	A450 Net Abs.	Calculated Conc. (IU/L)
A1, A2	Std. A (0 IU/L)	0.072	
B1, B2	Std. B (5.0 IU/L)	0.214	
C1, C2	Std. C (10 IU/L)	0.342	
D1, D2	Std. D (25 IU/L)	0.602	
E1, E2	Std. E (50 IU/L)	1.397	
F1, F2	Std. F (100 IU/L)	2.372	
F1, F2	Sample 1	0.266	7.2

NOTE: These data are for demonstration purpose only. A complete standard curve must be run in every assay to determine sample values. Each laboratory should determine their own normal reference values.

A typical std curve (Plot linear graph Draw the best curve through the points. Do not use this for calculating sample values).

Performance Characteristics

A total of 90 sera were tested by this ELISA and a reference ELISA kit.

Correlation	Slope	Intercept
0.97	0.95	0.37

PRINCIPLE OF THE TEST

FSH ELISA kit is based on simultaneous binding of human FSH from samples to two antibodies, one immobilized on microtiter well plates, and other conjugated to the enzyme horseradish peroxidase. After a washing step, chromogenic substrate is added and color developed. The enzymatic reaction (color) is directly proportional to the amount of FSH present in the sample. Adding stopping solution terminates the reaction. Absorbance is then measured on a microtiter well ELISA reader at 450 nm. and FSH concentrations in samples and control are read off the standard curve.

MATERIALS AND EQUIPMENT REQUIRED

Adjustable micropipet (20-100 μ l) and Multichannel pipet with disposable plastic tips. Reagent troughs, Plate washer (recommended) and ELISA plate Reader.

PRECAUTIONS

The Alpha Diagnostic International FSH ELISA test is intended for *in vitro research* use only. The reagents contain thimerosal as preservative; necessary care should be taken when disposing solutions. The Controls Serum has been prepared from human sera shown to be negative for HBsAg and HIV antibodies. Nevertheless, such tests are unable to prove the complete absence of viruses, therefore, sera should be handled with appropriate precautions. Applicable **MSDS**, if not already on file, for the following reagents can be obtained from ADI or the web site. TMB (substrate), H2SO4 (stop solution), and Prolcin-300 (0.1% v/v in standards, sample diluent and HRP-conjugates).

All waste material should be properly disinfected before disposal. Avoid contact with the stop solution (1N sulfuric acid).

SPECIMEN COLLECTION AND HANDLING

Collect blood by venipuncture, allow to clot, and separate the serum by centrifugation at room temperature. Do not heat inactivate the serum. If sera cannot be immediately assayed , these could be stored at -20° C for up to six months. Avoid repeated freezing and thawing of samples. No preservatives should be added to the serum.

NOTES

Read instructions carefully before the assay. Do not allow reagents to dry on the wells. Careful aspiration of the washing solution is essential for good assay precision. Since timing of the incubation steps is important to the performance of the assay, pipet the samples without interruption and it should not exceed 5 minutes to avoid assay drift. If more than one plate is being used in one run, it is recommended to include a standard

curve on each plate. The unused strips should be stored in a sealed bag at 4^oC. Addition of the HRP substrate solution starts a kinetic reaction, which is terminated by dispensing the stopping solution. Therefore, keep the incubation time for each well the same by adding the reagents in identical sequence. Plate readers measure absorbance vertically. Do not touch the bottom of the wells.

Preparation of the reagents:

Dilute wash buffer (1:10) with distilled water (50 ml stock in 450 ml. Store at 4°C.

Prepare 1X solution HRP conjugate. Dilute 40 µl stock conjugate in 2 ml of assay buffer. (240 µl in 12 ml for complete 96-well plate).

STORAGE AND STABILITY

The microtiter well plate and all other reagents are stable at 2-8°C until the expiration date printed on the label. The whole kit stability is usually 6 months from the date of shipping under appropriate storage conditions.

Once opened/used standards are stable for two month at 2-8°C. The unused portions of the standards should be frozen in suitable aliquots for long-term use. Repeated freezing and thawing is not recommended.

TEST PROCEDURE (ALLOW ALL REAGENTS TO REACH ROOM TEMPERATURE BEFORE USE).

Remove required number of coated strips and arrange them on the plate. Store unused strips in the bag. Dilute wash buffer (1:10) (50 ml stock to 450 ml of distilled or deionized water). Dilute stock conjugate in assay buffer.

- 1. Label or mark the microtiter well strips to be used on the plate.
- 2. Pipet **25** μl of standards, control, and serum samples into appropriate wells in *duplicate*.
- 3. Pipet **100 µl** of assay buffer into each well. Mix gently
- Cover the plate and incubate for 30 minutes on plate shaker (200 rpm) at room temperature.
- 5. Aspirate and wash the wells 3 times with 300 μl of 1 X wash buffer. We recommend using an automated ELISA plate washer for better consistency. Failure to wash the wells properly will lead to high blank or zero values. If washing manually, plate must be tapped over paper towel between washings to ensure proper washing.
- Pipet 100 µl of working HRP conjugate into each well.. Mix gently Cover the plate and incubate on plate shaker for 30 minutes at room temperature.
- 7. Aspirate and wash the wells 3 times with 300 µl of 1 X wash buffer
- 8. Dispense **100 ul TMB substrate per well.** Mix gently.
- 9. Cover the plate and incubate for 15-20 minutes on plate shaker at room temperature. Note: The incubation time at this step can be changed within a few minutes so as so to produce the maximum color (after adding the stop solution to about 2.5-3.00 or within the readable range of the ELISA reader. It will not impact the sample.
- 10. Stop the reaction by adding $50~\mu l$ of stopping solution to all wells at the same timed intervals as in step 7 (color turns yellow). Mix gently.
- 11. Measure the absorbance at **450 nm** using an ELISA reader. Color is stable for at least 30 min after stopping.

DILUTION OF SAMPLES

Serum samples do not usually require dilution. However, if dilution is desired, the zero standard (standard A) must be used and the results obtained should be multiplied by the appropriate dilution factor.

LIMITATATIONS

- 1. This kit is for in vitro research use only. The FSH values should be used in an adjunct to other data available.
- FSH values have been reported to be affected by estrogen and certain drug therapies and specimens from such patient should be interpreted with caution.
- Due to extremely high concentration of HCG in pregnant women, measurement of similar hormones such as FSH and LH may yield falsely elevated results.

CALCULATION OF RESULTS

Check FSH standard value on each standard vial. This value might vary from lot to lot. Make sure you check the value on every kit. To construct the standard curve, plot the absorbance for the FSH standards (vertical axis) versus the FSH standard concentrations (horizontal axis) on a linear graph paper. Draw the best curve through the points. Read the absorbance for controls and each unknown sample from the curve. Record the value for each control or 3. Sensitivity unknown sample.

EXPECTED VALUES

- 1. The differences in assay techniques and a variety standard preparation used, it is advisable for each lab to establish their own normal values.
- 2. Plasma levels of FSH and LH in women vary with the menstrual cycle. FSH levels rise slightly and then decline progressively during the early follicular phase, whereas as LH levels are relatively stable. An abrupt rise in LH at midcycle, initiated by increasing estrogen secretion by the developing follicle and accompanied by FSH rise, triggers ovulation. Both hormone levels decline during the luteal phase. Levels of FSH and LH in males are similar to those in females during follicular phase. FSH and LH increase in response to age-related decrease in gonadal functions in both sexes. In women, this occurs at menopause, and in men a gradual increase is seen during the sixth to eight decade.

Species Cross reactivity

The antibodies (anti-human FSH) used this kit has not been tested for potential cross-reactive with FSH from species like monkey, mouse, and rat etc. The kit may work in other species.